Fragmentation of fractal random structures

Martin Weigel

Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom and Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

with Eren Metin Elçi and Nikolaos G. Fytas (Coventry)

International Conference on Computer Simulation in Physics and Beyond Moscow, September 7, 2015

see Phys. Rev. Lett. 114, 115701 (2015) and arXiv:1509.00668

The most basic model is through a rate equation of the form:

The most basic model is through a rate equation of the form:

$$
\frac{\partial n(s,t)}{\partial t} = -\int_0^s n(s,t) a(s) b(s,s') ds' + 2 \int_s^\infty n(s',t) a(s') b(s',s) ds',
$$

 $n(s, t)$ number density of *s* clusters at time *t a*(*s*) fragmentation rate of clusters of size *s* $b(s, s)$) conditional probability for *s* breakup to produce *s'* cluster (1)

The most basic model is through a rate equation of the form:

$$
\frac{\partial n(s,t)}{\partial t} = -\int_0^s n(s,t) a(s) b(s,s') ds' + 2 \int_s^\infty n(s',t) a(s') b(s',s) ds',
$$

 $n(s, t)$ number density of *s* clusters at time *t a*(*s*) fragmentation rate of clusters of size *s* $b(s, s')$ conditional probability for s breakup to produce s' cluster

Assumptions:

- break-up kernel $c(s, s') = a(s) b(s, s')$ time independent
- **•** break-up spatially homogeneous
- **•** break-up independent of shape

(1)

The most basic model is through a rate equation of the form:

$$
\frac{\partial n(s,t)}{\partial t} = -\int_0^s n(s,t) a(s) b(s,s') ds'
$$

$$
+ 2 \int_s^\infty n(s',t) a(s') b(s',s) ds',
$$

 $n(s, t)$ number density of *s* clusters at time *t a*(*s*) fragmentation rate of clusters of size *s* $b(s, s')$ conditional probability for s breakup to produce s' cluster

Assumptions:

- break-up kernel $c(s, s') = a(s) b(s, s')$ time independent
- **•** break-up spatially homogeneous
- **•** break-up independent of shape

This leads to a mean-field description with scaling properties.

(1)

Non mean-field: lattice model including inhomogeneity, non-trivial shapes and fractal structures.

Random-cluster model

Non mean-field: lattice model including inhomogeneity, non-trivial shapes and fractal structures. Random-cluster model:

$$
Z_{\rm RC} = \sum_{\mathcal{G}' \subseteq \mathcal{G}} p^{b(\mathcal{G}')} (1 - p)^{\mathcal{E} - b(\mathcal{G}')} q^{k(\mathcal{G}')} , \ \ p, q > 0,\tag{2}
$$

Random-cluster model

Non mean-field: lattice model including inhomogeneity, non-trivial shapes and fractal structures. Random-cluster model:

$$
Z_{\rm RC} = \sum_{\mathcal{G}' \subseteq \mathcal{G}} p^{b(\mathcal{G}')} (1-p)^{\mathcal{E}-b(\mathcal{G}')} q^{k(\mathcal{G}')} , \quad p, q > 0,
$$
 (2)

- **•** equivalent to Potts model for integer q
- includes percolation ($q \rightarrow 1$), Ising model ($q = 2$), random resistor networks $(q \rightarrow 0)$, \dots
- \bullet continuous percolation transition for $q < q_c$
- \bullet first-order percolation transition for $q > q_c$
- $q_c = 4$ in 2D, $q_c \approx 2.8$ in 3D

 $p = 1.000$

Bridges and non-bridges

Only the removal of bridge bonds creates an additional fragment:

Bridges and non-bridges

Only the removal of bridge bonds creates an additional fragment:

Fragmentation rate effected by breaking bonds randomly at a constant rate depends on the density of bridges.

Bridge density

(Relative) bridge density as a function of *p*:

Bridge density

(Relative) bridge density as a function of *p*:

Critical point $p_c = \sqrt{q}/(1+\sqrt{q})$ is where the change in bridge density and hence the fragility becomes singular (for $q \ge 2$).

Scaling theory

How do the fragments look like? Scaling theory for $a(s)$ and $b(s, s')$ for percolation (Gyure and Edwards, 1992):

$$
a(s) \sim s^{\lambda}
$$

$$
b(s, s') \sim s^{-\phi} g(s'/s)
$$
 (3)

with $\lambda \approx 1$ and $\phi \approx 1.6$ for 2D percolation.

Scaling theory

How do the fragments look like? Scaling theory for $a(s)$ and $b(s, s')$ for percolation (Gyure and Edwards, 1992):

$$
a(s) \sim s^{\lambda}
$$

$$
b(s, s') \sim s^{-\phi} g(s'/s)
$$
 (3)

with $\lambda \approx 1$ and $\phi \approx 1.6$ for 2D percolation.

Are λ and ϕ related to the known percolation exponents?

Bridge-edge identity

Based on the Russo-Margulis formula in percolation theory, it is possible to prove the following **bridge-edge identity**

$$
\langle \mathcal{B} \rangle = \frac{\langle \mathcal{N} \rangle - p}{(1 - p)(1 - q)} \tag{5}
$$

Hence, the bridge density $\langle B \rangle$ is linearly related to the density $\langle N \rangle$ of active edges. Since $\mathcal{N} = \nu u/2$, the bridge density is essentially equivalent to the energy.

Bridge-edge identity

Based on the Russo-Margulis formula in percolation theory, it is possible to prove the following **bridge-edge identity**

$$
\langle \mathcal{B} \rangle = \frac{\langle \mathcal{N} \rangle - p}{(1 - p)(1 - q)} \tag{5}
$$

Hence, the bridge density $\langle B \rangle$ is linearly related to the density $\langle N \rangle$ of active edges. Since $\mathcal{N} = \frac{pu}{2}$, the bridge density is essentially equivalent to the energy.

As $0 < \langle N \rangle < 1$ we conclude that

$$
\lambda = 1.
$$

Bridge-edge identity

Based on the Russo-Margulis formula in percolation theory, it is possible to prove the following **bridge-edge identity**

$$
\langle \mathcal{B} \rangle = \frac{\langle \mathcal{N} \rangle - p}{(1 - p)(1 - q)} \tag{5}
$$

Hence, the bridge density $\langle B \rangle$ is linearly related to the density $\langle N \rangle$ of active edges. Since $\mathcal{N} = \frac{pu}{2}$, the bridge density is essentially equivalent to the energy.

As $0 < \langle N \rangle < 1$ we conclude that

$$
\lambda = 1.
$$

Clearly, the case $q \to 1$ is singular. There one finds

$$
\langle \mathcal{B} \rangle = \frac{1}{p-1} \lim_{q \to 1} \frac{\mathrm{d}}{\mathrm{d}q} \langle \mathcal{N} \rangle
$$

Bridge densities

Equation [\(5\)](#page-26-0) holds for arbitrary graphs. At criticality, $\langle \mathcal{N} \rangle = 1/2$ and hence

$$
\langle \mathcal{B} \rangle_c = \frac{1}{2} \frac{1}{1 + \sqrt{q}},\tag{6}
$$

Bridge densities

Equation [\(5\)](#page-26-0) holds for arbitrary graphs. At criticality, $\langle \mathcal{N} \rangle = 1/2$ and hence

$$
\langle \mathcal{B} \rangle_c = \frac{1}{2} \frac{1}{1 + \sqrt{q}},\tag{6}
$$

Bridge densities

Equation [\(5\)](#page-26-0) holds for arbitrary graphs. At criticality, $\langle \mathcal{N} \rangle = 1/2$ and hence

$$
\langle \mathcal{B} \rangle_c = \frac{1}{2} \frac{1}{1 + \sqrt{q}},\tag{6}
$$

What are the finite-size corrections?

Scaling corrections

The bond density is equivalent to the energy.

Scaling corrections

The bond density is equivalent to the energy. For the energy, we expect

$$
u_L = u_{\infty} + A_u L^{-\kappa} + o(L^{-\kappa}), \tag{7}
$$

with $\kappa = (1 - \alpha)/\nu = d - 1/\nu$.

Scaling corrections

The bond density is equivalent to the energy. For the energy, we expect

$$
u_L = u_{\infty} + A_u L^{-\kappa} + o(L^{-\kappa}), \tag{7}
$$

with $\kappa = (1 - \alpha)/\nu = d - 1/\nu$.

Fragmentation kernel

Consider probability $b(s, s')$ for fragmentation of s cluster to produce daughter of size s'.
Fragmentation kernel

Consider probability $b(s, s')$ for fragmentation of s cluster to produce daughter of size s'.

Fragmentation kernel

Consider probability $b(s, s')$ for fragmentation of s cluster to produce daughter of size s'.

Scaling form

$$
b_{s',s} \sim s^{-\phi} \mathcal{G}\left(\frac{s'}{s}, \frac{s}{L^{d_F}}\right). \tag{8}
$$

Fragmentation kernel

Consider probability $b(s, s')$ for fragmentation of s cluster to produce daughter of size s'.

Scaling form

$$
b_{s',s} \sim s^{-\phi} \mathcal{G}\left(\frac{s'}{s}, \frac{s}{L^{d_F}}\right). \tag{8}
$$

What about *φ*?

What about *φ*? It is possible to show that

$$
\phi = 2 - (d - x_2)/d_F = 2 - d_R/d_F,
$$

where x_2 is the two-arm exponent and $d_R = d - x_2$ is the red-bond fractal dimension.

What about *φ*? It is possible to show that

$$
\phi = 2 - (d - x_2)/d_F = 2 - d_R/d_F,
$$

where x_2 is the two-arm exponent and $d_R = d - x_2$ is the red-bond fractal dimension.

Does this fit with the earlier work on percolation?

Does this fit with the earlier work on percolation?

 $\phi = \tau - 1 + 1/\nu d_F$ Roux and Guyon, 1989

Does this fit with the earlier work on percolation?

✭✭✭✭✭✭✭✭ *^φ* ⁼ *^τ* [−] ¹ ⁺ ¹*/νd^F* Roux and Guyon, 1989

Does this fit with the earlier work on percolation?

✭✭✭✭✭✭✭✭ *^φ* ⁼ *^τ* [−] ¹ ⁺ ¹*/νd^F* Roux and Guyon, 1989

 $φ$ = 2 − 1/*νd_F* Gyure, Edwards, Stauffer, ..., 1992-99

Does this fit with the earlier work on percolation?

✭✭✭✭✭✭✭✭ *^φ* ⁼ *^τ* [−] ¹ ⁺ ¹*/νd^F* Roux and Guyon, 1989

✭✭✭✭✭✭✭ *^φ* ⁼ ² [−] ¹*/νd^F* Gyure, Edwards, Stauffer, ..., 1992-99

We understand the equilibrium behavior:

 $\text{constant bridge density: } a(s) \sim a^{\lambda}, \ \lambda = 1$

We understand the equilibrium behavior:

- $\text{constant bridge density: } a(s) \sim a^{\lambda}, \ \lambda = 1$
- scaling form of fragmentation kernel: $\mathit{b}(s,s') \sim s^{-\phi} g(s/s')$ with $\phi = 2 - d_R/d_F$

We understand the equilibrium behavior:

- $\text{constant bridge density: } a(s) \sim a^{\lambda}, \ \lambda = 1$
- scaling form of fragmentation kernel: $\mathit{b}(s,s') \sim s^{-\phi} g(s/s')$ with $\phi = 2 - d_R/d_F$
- bridge density: $\langle B \rangle = [\langle \mathcal{N} \rangle p]/[(1 p)(1 q)].$

We understand the equilibrium behavior:

- $\text{constant bridge density: } a(s) \sim a^{\lambda}, \ \lambda = 1$
- scaling form of fragmentation kernel: $\mathit{b}(s,s') \sim s^{-\phi} g(s/s')$ with $\phi = 2 - d_R/d_F$
- bridge density: $\langle B \rangle = [\langle \mathcal{N} \rangle p]/[(1 p)(1 q)].$

We understand the equilibrium behavior:

- $\text{constant bridge density: } a(s) \sim a^{\lambda}, \ \lambda = 1$
- scaling form of fragmentation kernel: $\mathit{b}(s,s') \sim s^{-\phi} g(s/s')$ with $\phi = 2 - d_R/d_F$
- **•** bridge density: $\langle \mathcal{B} \rangle = [\langle \mathcal{N} \rangle p]/[(1 p)(1 q)].$

In how far is this relevant to the non-equilibrium process of fragmentation?

• limiting state consists of all single-site clusters

We understand the equilibrium behavior:

- $\text{constant bridge density: } a(s) \sim a^{\lambda}, \ \lambda = 1$
- scaling form of fragmentation kernel: $\mathit{b}(s,s') \sim s^{-\phi} g(s/s')$ with $\phi = 2 - d_R/d_F$
- **•** bridge density: $\langle \mathcal{B} \rangle = [\langle \mathcal{N} \rangle p]/[(1 p)(1 q)].$

In how far is this relevant to the non-equilibrium process of fragmentation?

- **•** limiting state consists of all single-site clusters
- introduce cutoff to regularize this and model milling or fluid break-up

Start from a fractal, critical configuration and remove bonds at random. Do not break up any clusters smaller than *sc*.

s

Start from a fractal, critical configuration and remove bonds at random. Do not break up any clusters smaller than *sc*.

We find power-law fragment distributions!

Start from a fractal, critical configuration and remove bonds at random. Do not break up any clusters smaller than *sc*.

We find power-law fragment distributions! Furthermore, the size distribution only depends on the ratio *s/sc*:

Start from a fractal, critical configuration and remove bonds at random. Do not break up any clusters smaller than *sc*.

We find power-law fragment distributions! Furthermore, the size distribution only depends on the ratio *s/sc*:

$$
n_{s_c}(s,\infty) \sim s^{-\chi} \mathcal{F}\left(\frac{s}{s_c}\right). \tag{9}
$$

What about the exponent *χ*?

What about the exponent *χ*? We find that

$$
\chi = \phi = 2 - d_R/d_F
$$

Why does an equilibrium exponent describe non-equilibrium behavior?

Why does an equilibrium exponent describe non-equilibrium behavior? Consider the asymmetric shape of the break-up kernel:

Why does an equilibrium exponent describe non-equilibrium behavior? Consider the asymmetric shape of the break-up kernel:

This leads to an asymmetric break-up: small parts break off from big clusters.

Why does an equilibrium exponent describe non-equilibrium behavior? Consider the asymmetric shape of the break-up kernel:

This leads to an asymmetric break-up: small parts break off from big clusters. They hence quickly fall below the cutoff *sc*.

Genealogical tree of fragmentation events:

Genealogical tree of fragmentation events:

Summary:

• full characterization of scaling behavior of fragmentation of critical random-cluster model

- full characterization of scaling behavior of fragmentation of critical random-cluster model
- o new exact relation between bridge and bond densities

- full characterization of scaling behavior of fragmentation of critical random-cluster model
- o new exact relation between bridge and bond densities
- dynamical, non-equilibrium fragmentation with a cutoff leads to power-law fragment distributions, described by equilibrium exponents

- full characterization of scaling behavior of fragmentation of critical random-cluster model
- **•** new exact relation between bridge and bond densities
- dynamical, non-equilibrium fragmentation with a cutoff leads to power-law fragment distributions, described by equilibrium exponents
- relevant to experiment (universality)?

What about the exponent *χ*? We find that

$$
\chi = \phi = 2 - d_R/d_F
$$

- full characterization of scaling behavior of fragmentation of critical random-cluster model
- **•** new exact relation between bridge and bond densities
- dynamical, non-equilibrium fragmentation with a cutoff leads to power-law fragment distributions, described by equilibrium exponents
- relevant to experiment (universality)?

Summary:

- full characterization of scaling behavior of fragmentation of critical random-cluster model
- **•** new exact relation between bridge and bond densities
- dynamical, non-equilibrium fragmentation with a cutoff leads to power-law fragment distributions, described by equilibrium exponents
- relevant to experiment (universality)?

Extensions:

o our results extend to three dimensions

Eren M. Elçi, MW, Phys. Rev. E 88, 033303 (2013). Eren M. Elçi, MW, Nikolaos G. Fytas, Phys. Rev. Lett. **114**, 115701 (2015) Eren M. Elçi, MW, Nikolaos G. Fytas, *Bridges in the random-cluster model* , arXiv:1509.00668.
Conclusions

Summary:

- full characterization of scaling behavior of fragmentation of critical random-cluster model
- **•** new exact relation between bridge and bond densities
- dynamical, non-equilibrium fragmentation with a cutoff leads to power-law fragment distributions, described by equilibrium exponents
- relevant to experiment (universality)?

Extensions:

- o our results extend to three dimensions
- vertex fragmentation related to multi-arm exponents

Eren M. Elçi, MW, Phys. Rev. E 88, 033303 (2013). Eren M. Elçi, MW, Nikolaos G. Fytas, Phys. Rev. Lett. **114**, 115701 (2015) Eren M. Elçi, MW, Nikolaos G. Fytas, *Bridges in the random-cluster model* , arXiv:1509.00668.

Conclusions

Summary:

- full characterization of scaling behavior of fragmentation of critical random-cluster model
- **•** new exact relation between bridge and bond densities
- dynamical, non-equilibrium fragmentation with a cutoff leads to power-law fragment distributions, described by equilibrium exponents
- relevant to experiment (universality)?

Extensions:

- o our results extend to three dimensions
- vertex fragmentation related to multi-arm exponents
- **•** can use bridge-free clusters to determine backbone fractal dimension

Eren M. Elçi, MW, Phys. Rev. E 88, 033303 (2013). Eren M. Elçi, MW, Nikolaos G. Fytas, Phys. Rev. Lett. **114**, 115701 (2015) Eren M. Elçi, MW, Nikolaos G. Fytas, *Bridges in the random-cluster model* , arXiv:1509.00668.

Conclusions

Summary:

- full characterization of scaling behavior of fragmentation of critical random-cluster model
- **•** new exact relation between bridge and bond densities
- dynamical, non-equilibrium fragmentation with a cutoff leads to power-law fragment distributions, described by equilibrium exponents
- relevant to experiment (universality)?

Extensions:

- o our results extend to three dimensions
- vertex fragmentation related to multi-arm exponents
- **•** can use bridge-free clusters to determine backbone fractal dimension
- dynamical fragmentation of solid objects gives different set of exponents

Eren M. Elçi, MW, Phys. Rev. E 88, 033303 (2013). Eren M. Elçi, MW, Nikolaos G. Fytas, Phys. Rev. Lett. **114**, 115701 (2015) Eren M. Elçi, MW, Nikolaos G. Fytas, *Bridges in the random-cluster model* , arXiv:1509.00668.