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Mean-field model

The most basic model is through a rate equation of the form:

∂n(s, t)
∂t = −

∫ s

0
n(s, t) a(s) b(s, s′) ds′

+ 2
∫ ∞

s
n(s′, t) a(s′) b(s′, s) ds′,

(1)

n(s, t) number density of s clusters at time t
a(s) fragmentation rate of clusters of size s
b(s, s′) conditional probability for s breakup to produce s′ cluster

Assumptions:
break-up kernel c(s, s′) = a(s) b(s, s′) time independent
break-up spatially homogeneous
break-up independent of shape

This leads to a mean-field description with scaling properties.
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Random-cluster model

Non mean-field: lattice model including inhomogeneity, non-trivial shapes and
fractal structures.

Random-cluster model:

ZRC =
∑
G′⊆G

pb(G′)(1− p)E−b(G′)qk(G′), p, q > 0, (2)

equivalent to Potts model for integer q
includes percolation (q → 1), Ising model (q = 2), random resistor networks
(q → 0), . . .
continuous percolation transition for q < qc

first-order percolation transition for q > qc

qc = 4 in 2D, qc ≈ 2.8 in 3D
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Bond fragmentation
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Bridges and non-bridges

Only the removal of bridge bonds creates an additional fragment:

Fragmentation rate effected by breaking bonds randomly at a constant rate depends
on the density of bridges.
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Bridge density

(Relative) bridge density as a function of p:
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Critical point pc = √q/(1 +√q) is where the change in bridge density and hence
the fragility becomes singular (for q ≥ 2).
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Scaling theory

How do the fragments look like? Scaling theory for a(s) and b(s, s′) for
percolation (Gyure and Edwards, 1992):

a(s) ∼ sλ

b(s, s′) ∼ s−φg(s′/s)
(3)

with λ ≈ 1 and φ ≈ 1.6 for 2D percolation.

Are λ and φ related to the known percolation exponents?

We know that the critical cluster density is

nc(s) ∼ s−τ exp(−cs),

where τ is the Fisher exponent. Consider the total number of bridges,∑
s s nc(s)a(s)∑

s s nc(s) ∼
∫

s−τ+1+λe−cs ds. (4)
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Bridge-edge identity

Based on the Russo-Margulis formula in percolation theory, it is possible to prove
the following bridge-edge identity

〈B〉 = 〈N〉 − p
(1− p)(1− q) (5)

Hence, the bridge density 〈B〉 is linearly related to the density 〈N〉 of active edges.
Since N = pu/2, the bridge density is essentially equivalent to the energy.

As 0 < 〈N〉 < 1 we conclude that

λ = 1 .

Clearly, the case q → 1 is singular. There one finds

〈B〉 = 1
p − 1 lim

q→1

d
dq 〈N〉
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Bridge densities

Equation (5) holds for arbitrary graphs. At criticality, 〈N〉 = 1/2 and hence

〈B〉c = 1
2

1
1 +√q , (6)
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What are the finite-size corrections?
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Scaling corrections

The bond density is equivalent to the energy.

For the energy, we expect

uL = u∞ + AuL−κ + o(L−κ), (7)

with κ = (1− α)/ν = d − 1/ν.
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Fragmentation kernel

Consider probability b(s, s′) for fragmentation of s cluster to produce daughter of
size s′.

Scaling form

bs′,s ∼ s−φG
(

s′

s ,
s

LdF

)
. (8)
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Fragmentation kernel (cont’d)

What about φ?

It is possible to show that

φ = 2− (d − x2)/dF = 2− dR/dF ,

where x2 is the two-arm exponent and dR = d − x2 is the red-bond fractal
dimension.
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Fragmentation kernel (cont’d)

Does this fit with the earlier work on percolation?
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Non-equilibrium fragmentation kinetics

We understand the equilibrium behavior:
constant bridge density: a(s) ∼ aλ, λ = 1

scaling form of fragmentation kernel: b(s, s′) ∼ s−φg(s/s′) with
φ = 2− dR/dF

bridge density: 〈B〉 = [〈N〉 − p]/[(1− p)(1− q)].

In how far is this relevant to the non-equilibrium process of fragmentation?

limiting state consists of all single-site clusters
introduce cutoff to regularize this and model milling or fluid break-up
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Non-equilibrium fragmentation kinetics (cont’d)

Start from a fractal, critical configuration and remove bonds at random. Do not
break up any clusters smaller than sc.
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We find power-law fragment distributions! Furthermore, the size distribution only
depends on the ratio s/sc:

nsc (s,∞) ∼ s−χF
(

s
sc

)
. (9)
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Non-equilibrium fragmentation kinetics (cont’d)

Start from a fractal, critical configuration and remove bonds at random. Do not
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Non-equilibrium fragmentation kinetics (cont’d)

What about the exponent χ?

We find that

χ = φ = 2− dR/dF

0.0 0.1 0.2 0.3 0.4 0.5 0.6

sc/L
2

1.4

1.5

1.6

1.7

1.8

χ

0
1

2
3

M. Weigel (Coventry/Mainz) Fragmentation SPLDS15 18 / 23



Non-equilibrium fragmentation kinetics (cont’d)

What about the exponent χ? We find that

χ = φ = 2− dR/dF

0.0 0.1 0.2 0.3 0.4 0.5 0.6

sc/L
2

1.4

1.5

1.6

1.7

1.8

χ

0
1

2
3

M. Weigel (Coventry/Mainz) Fragmentation SPLDS15 18 / 23



Non-equilibrium fragmentation kinetics (cont’d)

Why does an equilibrium exponent describe non-equilibrium behavior?

Consider the asymmetric shape of the break-up kernel:
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This leads to an asymmetric break-up: small parts break off from big clusters. They
hence quickly fall below the cutoff sc.
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Non-equilibrium fragmentation kinetics (cont’d)

Genealogical tree of fragmentation events:

L=96

q=1.0

sc =200

The kinetic behavior is dominated by critical effects and hence universal!
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Non-equilibrium fragmentation kinetics (cont’d)

Genealogical tree of fragmentation events:

L=128

q=3.0

sc =200

The kinetic behavior is dominated by critical effects and hence universal!
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Conclusions

Summary:
full characterization of scaling behavior of fragmentation of critical
random-cluster model

new exact relation between bridge and bond densities
dynamical, non-equilibrium fragmentation with a cutoff leads to power-law
fragment distributions, described by equilibrium exponents
relevant to experiment (universality)?

Extensions:

our results extend to three dimensions
vertex fragmentation related to multi-arm exponents
can use bridge-free clusters to determine backbone fractal dimension
dynamical fragmentation of solid objects gives different set of exponents
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Non-equilibrium fragmentation kinetics (cont’d)

What about the exponent χ? We find that

χ = φ = 2− dR/dF
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