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The Future of Quantum Information Processing

Mendeleev-like but continuous ―table‖ of 

artificial atom types: Cooper pair box, flux 

qubit, phase qubit, quantronium, 

еransmon, fluxonium, and hybrid qubit 

Superconducting Circuits for Quantum 

Information: An Outlook, M. H. Devoret and 

R. J. Schoelkopf, Science 339,1163(2013)

Examples of the ―Moore’s law‖ type of exponential 

scaling in performance

of superconducting qubits during recent years

The horizontal and vertical coordinates correspond to fabrication 

parameters that determine the

inverse of the number of corrugations in the potential and the 

number of levels per well, respectively.

Josephson junction is in the 

heart of quantum information 

processing schemes

State of the art



What are Josephson junctions? 
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A Josephson junction is composed of two bulk superconductors separated by a 

thin insulating layer through which Cooper pairs can tunnel.

The devices are named after Brian Josephson, who predicted in 

1962 that pairs of superconducting electrons could "tunnel" right 

through the nonsuperconducting barrier from one superconductor to 

another. He also predicted the exact form of the current and voltage 

relations for the junction. Experimental work proved that he was 

right, and Josephson was awarded the 1973 Nobel Prize in Physics 

for his work.

B. D. Josephson, ―Possible new effects in superconductive tunneling,‖ 

Phys. Lett., Vol. 1, pp. 251–253, July 1962. P.

C.H. van der Wal. Technische Universiteit Delft, 2001.
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R. P. Feynman, R. B. Leighton, and M. 

Sands, The Feynman Lectures on Physics, 

Vol. III
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The supercurrent through the junction is  where the critical current 

The time variation of this phase difference is related to the potential difference 

V between the two superconductors:  

In summary:

is the phase difference of the two superconductors across the junction

How do they work? 
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Energy of the junction:

Tilted washboard potential of a Josephson junction for different values of a 

bias current
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Examples of Josephson junctions: Рersistent 

current qubits

material: Aluminum,

shadow-evaporation technique,

two junctions 600x200nm

IC  600 nA,

the third one is smaller: 

a=EJ1 /EJ2,3 ~ 0.8 … 0.9,

inductance L  20-40 pH.

Il’ichev E. et al. Leibniz Institute of 

Photonic Technology, Germany
Al

2 mm

flux qubit/Delft

J.E. Mooij et al., Science 285, 1036, 

1999

Qubit junctionsSQUID junction

7



8

A circuit analog for cavity QED

2g = vacuum Rabi freq.

k = cavity decay rate

g = ―transverse‖ decay rate

5 mm
DC +

6 GHz in

out

transmission

line ―cavity‖

Blais, Huang, Wallraff, SMG & RS, PRA 2004

Cross-section

of mode:

E B

10 mm

+ + --
Lumped element

equivalent circuit

Cross-section

of mode:

E B

10 mm

+ + --

Cross-section

of mode:

E B

10 mm

+ + --



M.Jerger, S.Poletto,P.Masha, 

U.Hubner, F.Lukashenko, 

E.Il’ichev, A.V.Ustinov (2011)



Implementation of a Quantum 

Metamaterial, Alexey V. 

Ustinov et al. (2013)

A. Shvetsov, A. M. Satanin, Franco Nori, S. 

Savel'ev, A.M. Zagoskin, Quantum 

metamaterial without local control, Phys. Rev. 

B 87, 235410(2013).

Two-photon lasing by a superconducting qubit, E. Il'ichev et al.(2015)



“I like to think that the moon is there

even if I don’t look at it”, Albert Einstein

once remarked. He objected to the

notion that truly macroscopic objects might

behave according to the laws of quantum

mechanics, and thus be subject to the same

uncertainties as photons or spins.

No moon there

Johan E. Mooij

nature physics | VOL 6 | 

JUNE 2010,401

The moon — a small moon, admittedly — is not there!

2 mm flux qubit/Delft       

Mooij et al., Science 285, 1036, 1999

Superposition principle. 

Is the Schrodinger's cat dead or 

alive? 

c c
 
  



Entanglement is a term used in quntum theory to describe the way that particles 

of energy/matter can become correlated to predictably interact with each other 

regardless of how far apart they are. 

Entanglement

E. Schrödinger, Naturwissenschaften 23, 807 

(1935).

The superposition principle is the basis of quantum theory. When this principle is applied to composite 

systems a new concept of entanglement is appeared. It was introduced by Schrödinger in quantum 

theory in the last century and at present time this principle became a central topic in discussion as 

main resource of quantum information and quantum computational problems. Entanglement is a 

property shared by two or more correlated systems. Quantum correlations are also responsible for a 

number of interesting effects in mesoscopic systems. These correlations may be realized in 

superconducting waveguides and circuits with embedded Josephson junctions and such kind of 

circuits are considered as promising candidates for future quantum information processing.



c c
 
  

Interaction

A qubit is a two-state quantum-

mechanical system,such as the 

polarization of a single photon:here 

the two states are vertical polarization 

and horizontal polarization.

A qutrit is a unit of quantum information that exists 

as a superposition of three orthogonal quantum 

states

  0 ,0 ,0c c c c
   
       An initial state of the decoupled system: 

Superposition state of the 

qubit may be prepared by 

using of a Rabi pulse

  0 ,0 ,0c c c c
   
       

2 mm

 ,0 ,0 , 1 , 1U c c c c
   
        Entanglement:

c c
 
 A maximal entangled state:  

1
, 1 , 1

2
s      



Нow to prepare entangled states of photons in the microwave frequency 

domain? 





Spontaneous parametric down-

conversion in optics



During this process governed by a third order electric susceptibility (3), three highly correlated

photons, with the energies 1 , 2 and 3 , are created from the annihilation of a photon at 0

as shown in figure 1(a).

Indeed calculations showed that the simultaneous birth of three photons is at the origin 

of intrinsic three-body quantum properties such as three-particle Greenberger-Horne-

Zeilinger (GHZ) quantum entanglement

Potassium Titanyl Phosphate (KTiOPO4 or KTP)

Greenberger-Horne-

Zeilinger



How to implement the microwave down-

conversion effect in a waveguide with an 

Josephson junction?

We study how a multi-level Josephson junction (artificial atom) interacts 

with an electromagnetic pulse in 1D coplanar waveguide. The main goal 

of this work is to study nonlinear effects. In particular, we discuss the 

down-conversion ( the effect of dividing the frequency) in a waveguide 

with an embedded  Josephson junctions 

Recently strong coupled systems such as 

waveguide and artificial atoms have attracted 

much attention. 

For instance, as first shown experimentally by 

Astafiev et al. (Science, 327, 840 (2010))

almost ideal mode matching can be realized 

with a superconducting flux qubit coupled to a 

1D transmission line. In that experiment, 94% 

extinction of the transmitted signal was 

observed showing that a single qubit can act 

as a near ideal mirror for microwave light.



Transmission Lines. Telegraph equations
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The equivalent circuit of the 

transmission line

Lumped elements: 

A capacitance and an inductance per 

unit length Josephson junctions

Continuous limit: coplanar 

waveguide with an embedded 

Josephson  junctions

Kirchoff’s laws 

A transmission line, such as a coaxial 

cable or a co-planar waveguide can be 

approximated by a series of inductors 

with a parallel capacitance to ground



Resonance modes in coplanar waveguide with

integrated Josephson circuits. A classical system

75 10CI A 

 1210C

 410R

18lZ

110

max, 105.5  cJ

A.V.Shvetsov,A.M.Satanin,V.A.Mironov and 

E.Il'ichev,Low Temp. Phys. 39, 927 (2013)

Current as a function of 

magnetic flux



Classical electrodynamics of waveguide
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The Lagrangian of the electromagnetic field that interacts with the 

Josephson junction
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Below we will be interested only in the process of dividing the frequency. 

Restricting the weakly nonlinear regime excitation, we will keep only  the 

terms                  corresponding to the expansion of the potential energy of 

the Josephson junction:
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Where

is the solution

and can be considered as 

an operator of incoming 

waves

For a weak driving pulse, a single Josephson junction operates as a linear oscillator and demonstrates the 

linear response for an excitation. At the same time a strong driving pulses can cause the transition of a 

Josephson oscillator in a nonlinear regime of excitation. 

The main resonance
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Quantum theory of microwave down 

conversion
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After the transition to a rotating coordinate system and averaging of rapidly 

oscillating oscillations, we obtain

2 3 3ˆ ˆ ˆ ˆ( )
4

effH n n g a a
m

    


Quantum theory of fractional resonance

A linear shift
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Population dynamics of fractional resonance
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Results

1. Let there to be an incoming electromagnetic pulse in syperposition of coherent state

in a waveguide with a narrow spectrum and with a characteristic frequency ~3ω; ω~ ω
J

2. The pulse excites a nonlinear oscillator.  The nonlinear oscillator is captured 

into a nonlinear (1:3) resonance:
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3. The oscillator emits an electromagnetic field at a frequency     ω~ ω

.

The shape of line  is approximately Lorentzian when the oscillator is at 

the high excitation levels.
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Summary

• Developed: a simple theory of microwave quantum field in a 
waveguide  with an integrated Josephson junction.

• Shown: in the case of coherent excitation the  nonlinear  
oscillator can be  captured by an external force  into either 
main or  fractional resonances.

• Constructed: under the rotating wave approximation, the 
quasi-energy states of an effective Hamiltonians describing 
the main and fractional resonances.

• Predicted: in the nonlinear Josephson circuit, it is possible to 
observe the down-conversion effect.


