
Integrating GPGPU computations with CPU coroutines in C++

Pavel A. Lebedev
Department of Computer Security,

National Research University Higher School of Economics,

34 Tallinskaya Ulitsa, Moscow, Russia

E-mail: cygnus@michiru.ru

Despite various efforts on standardization, both open and proprietary, there is currently no uni-
versally available programming interface to access compute capabilities of heterogeneous systems.
The two main competitors — NVIDIA CUDA and OpenCL — are being pushed by NVIDIA and
AMD respectively, and none is universally and uniformly supported.

C++ is a proven language for high-performance computing, but it lags in standardization of
recently rediscovered solution to elegant asynchronous processing, namely, coroutines. Coroutines
have proven to be the primary means of reverting tangled and piecewise asynchronous code back
to serial and readable form. While there are several concurrent proposals that involve resumable
functions, coroutines for C++ already have efficient library-based solutions.

Both CUDA and OpenCL are capable of invoking callbacks as notifications for events. This
allows us to integrate calls to GPGPU computation kernels and memory copies with existing ways
of waiting for network I/O and general callbacks using asio and coroutines based on boost.context
libraries. With these we can achieve good code readability of heterogeneously asynchronous code.

Our experience shows that for most tasks overhead of coroutines against pure callback-based
code following reactor pattern is insignificant, but even straightforward integration of foreign APIs
involves additional overhead of system calls of unpredictable latency.

We’ve tested CUDA in different context modes that determine the way CPU waits for GPUs.
OpenCL was also tested as implemented by NVIDIA and AMD for their hardware. We produced
experimental results for the common scenario of exchanging data with an accelerator for the smallest
possible amount of work to better expose latencies.

For NVIDIA CUDA the overhead is about 50µs for the cases where no kernel synchronization
is used, which is twice the running time without using our approach. While huge for this test case,
computations that are worth offloading to the GPU take orders of magnitude more time, so in
real applications it won’t contribute noticeably. If you’re using blocking synchronization, which is
the case for low power devices, the overhead is half as much in absolute numbers and only 30% in
relative.

The OpenCL implementation from NVIDIA is strangely a lot slower when coroutines are uti-
lized, showing extra latencies of about 500µs. Even then, this should be acceptable for long-running
kernels. OpenCL for AMD GPUs is comparable with CUDA blocking case, being slightly worse at
average of 95µs with extra 20µs of overhead for coroutine use.

This shows that existing libraries and APIs already allow unifying of asynchronous programming
in heterogeneous environments with acceptable overheads and good readability.

Keywords: C++, CUDA, OpenCL, coroutines.

1


